\begin{tabbing} $\forall$$i$:Id, ${\it ds}$:$x$:Id fp$\rightarrow$ Type, $x$:Id, $k$:Knd, $T$:Type, ${\it test}$:(State(${\it ds}$)$\rightarrow$$T$$\rightarrow\mathbb{B}$). \\[0ex]($\neg$($\uparrow$$x$ $\in$ dom(${\it ds}$))) \\[0ex]$\Rightarrow$ (($\uparrow$isrcv($k$)) $\Rightarrow$ ($i$ = destination(lnk($k$)))) \\[0ex]$\Rightarrow$ Normal($T$) \\[0ex]$\Rightarrow$ Normal(${\it ds}$) \\[0ex]$\Rightarrow$ \=R{-}base{-}recognize($i$;${\it ds}$;$x$;$k$;$T$;${\it test}$)\+ \\[0ex]$\Vdash$ ${\it es}$.\=(@$i$($x$:$\mathbb{B}$) \& (state@$i$ $\subseteq$r State(${\it ds}$)) \& (kindtype($i$;$k$) $\subseteq$r $T$))\+ \\[0ex]c$\wedge$ \=$\forall$$e$@$i$.\+ \\[0ex]($\uparrow$($x$ when $e$)) \\[0ex]$\Leftarrow\!\Rightarrow$ ($\exists$\=${\it e'}$:E\+ \\[0ex](((${\it e'}$ $<$loc $e$) \& kind(${\it e'}$) = $k$ $\in$ Knd) \\[0ex]c$\wedge$ ($\uparrow$(${\it test}$((state when ${\it e'}$),val(${\it e'}$)))))) \-\-\-\- \end{tabbing}